Ученые объяснили, как образование продлевает жизнь

Ключ к долголетию: почему высокий уровень образования снижает риск преждевременной смерти.

Старшая профильная школа: какой она будет

В Украине будет действовать система профильного образования для старших классов. Это позволит ученикам самостоятельно выбирать предметы для изучения.

Роль аналитико-синтетических рассуждений в формировании умений решать задачи алгебраическим способом

Образование и педагогика » Методика обучения решению текстовых задач алгебраическим способом » Роль аналитико-синтетических рассуждений в формировании умений решать задачи алгебраическим способом

Страница 10

Нам известно, что ткани первоначально было поровну, затем от 1 куска отрезали 14 м, а от 2ого – 22 м, и тогда в первом куске осталось втрое больше, чем во втором. Поэтому если мы из 22 вычтем 14, то получим 8 м, а это составляет 2 одинаковых части в первом куске, значит если 8÷2=4 м осталось во втором куске, после того как от него отрезали 22 м. Значит первоначально в нем было 26 м. Можно проверить, посчитав сколько было м в первом куске: 4×3=12 м осталось в первом куске после того, как от него отрезали 14 м, и для того, чтобы найти, сколько было мы должны 14+12=26 м было в первом куске первоначально.

Ответ: первоначально в каждом куске ткани было 26 м

2 способ.

Пусть во втором осталось х м ткани, тогда в первом осталось 3х м ткани.

Мы знаем, что от первого куска отрезали 14 м, а от второго – 22 метра, тогда в 1 куске было (3х+14) м ткани, а во втором было – (х+22) м ткани.

В условии сказано, что ткани изначально было поровну, значит можем составить уравнение:

1) 3х+14=х+22,

2х=8,

х=4 м ткани осталось во втором куске,

2) 4×3=12 м ткани осталось в первом куске,

3) 4+22=26 м было в первом куске изначально.

Мы знаем, что в первом и втором кусках ткани было поровну, следовательно, и во втором куске было 26 м ткани.

Ответ: первоначально в каждом куске ткани было 26 м

№638.

У двоих братьев было вместе 112р. После того как старший отдал младшему 14 р., у него осталось все же денег больше, чем у младшего, но всего лишь на 10 р.Сколько денег было у каждого мальчика первоначально?

Решение:

1 способ.

10р. 14р.

1 брат

2 брат

14р.

Всего у двух братьев 112 р.

10р.

1 брат

2 брат

14р

1) 112-24=88 р у двух мальчиков, после того как 1ый отдал 2ому – 14 р, и если у 1ого забрать 10 р.

2) 88÷2=44 р. стало у 2ого мальчика, когда 1ый отдал ему 14 р.,

3) 44-14=30 р. было у 2ого мальчика первоначально,

4) 44+10+14=68 р. было у первого мальчика вначале.

Ответ: у первого брата было 68 р., а у второго – 30 р.

6 класс.

§20.

В 6 классе после того как дети познакомились с действиями над положительными и отрицательными числами, научились решать уравнения, можно приступать к решению задач выделением трех этапов математического моделирования. Но решать с шестиклассниками задачи таким способом без предварительной подготовки преждевременно. Поэтому решение каждой такой задачи следует предварять специальной системой упражнений.

Например, №593.

В одном бидоне x л, а в другом – y л молока.

а) что означают выражения ?

б) что означают равенства ?

Эта задача предварительного этапа, затем следует задача №594:

В одном бидоне молока в 3 раза больше, чем в другом. когда из одного бидона перелили в другой 5 литров, молока в бидонах стало поровну. Сколько литров было в каждом бидоне первоначально?

Решите задачу алгебраическим способом.

Решение.

Пусть x л – количество молока, которое было до переливания во втором бидоне. Тогда в первом бидоне его было 3x л.

После переливания в первом бидоне осталось (3x-5) л молока, а во втором стало (x+5) л.

Поскольку после переливания в обоих бидонах молока стало поровну, можно составить уравнение:

3x-5=x+5.

Учитель сообщает, что эту часть рассуждений при решении задачи называют составлением математической модели. На этом этапе переводят текст задачи с обыденного языка на математический язык. В результате получают математическую модель ситуации, описанной в условии задачи. Такой математической моделью и является составленное уравнение. После этого приступают ко второму этапу, который называют работой с математической моделью. На этом этапе нам надо решить составленное уравнение 3x-5=x+5.

Страницы: 5 6 7 8 9 10 11 12 13 14

Еще по теме:

Педагогические условия, обеспечивающие эффективность освоения педагогами метода экспериментирования
Для эффективности педагогического процесса необходим постоянный поиск новых, более результативных методов воспитания и обучения, при помощи которых происходит передача детям содержания образования. Необходимость создания таких методов обосновывалась еще в работах многих педагогов, что возможно на б ...

Способы и материалы для изготовления транспарантов
Транспаранты (кодограммы) для графопроектора – изображения на фолиях – прозрачной термоустойчивой пленке, выполняемые полиграфическим и фотографическим способами или напечатанные на принтере, ксероксе. Размеры кадров транспарантов широко варьируются. Максимальные размеры кадров ограничиваются площа ...

Мудрости семейного воспитания
1. Если ты поймал сыну рыбу, ты накормил его на сегодня. Если ты научил сына ловить рыбу, ты накормил его на всю жизнь. Восточная мудрость. 2. Не стреляйте в своё будущее из пистолета, будущее выстрелит в вас из пушки. Народная мудрость. 3. Есть только одна подлинная ценность – это связь человека с ...

Искусственный интеллект в образовании

Искусственный интеллект ворвался в жизнь педагогов с открытием доступа к сервису ChatGPT в ноябре 2022 года. Но за это время было столько дискуссий, статей, сообщений, круглых столов, семинаров и мастер-классов о ИИ, что кажется, он с нами уже давно.

Навигация

Copyright © 2025 - All Rights Reserved - www.goldedu.ru